Selasa, 22 Desember 2009

Senyawa Kompleks

Titrasi kompleksometri adalah salah satu metode kuantitatif dengan memanfaatkan reaksi kompleks antara ligan dengan ion logam utamanya, yang umum di indonesia EDTA ( disodium ethylendiamintetraasetat/ tritiplex/ komplekson, dll ). Titrasi kompleksometri ini ada 3 macam, yaitu langsung, tidak langsung, dan substitusi. tergantung sifat zat yang akan ditentukan, misalnya calcium, maka indikator yang dipakai, pH dll akan berbeda, dalam titrasi kompleksometri juga. Titrasi kompleksometri meliputi reaksi pembentukan ion – ion kompleks ataupun pembentukan molekul netral yang terdisosiasi dalam larutan. Syaratnya mempunyai kelarutan tinggi.

Contohnya : kompleks logam dengan EDTA dan titrasi dengan merkuro nitrat dan perak sianida.

Reaksi pengkompleksan dengan suatu ion logam, melibatkan penggantian satu molekul pelarut atau lebih yang terkoordinasi, dengan gugus-gugus nukleofilik lain. Gugus-gugus yang terikat pada ion pusat, disebut ligan, dan dalam larutan air, reaksi dapat dinyatakan oleh persamaan:

M(H2O)n + L = M (H2O)(n-1) L + H2O

Disini ligan (L) dapat berupa sebuah molekul netral atau sebuah ion bermuatan, dengan penggantian molekul-molekul air berturut-turut selanjutnya dapat terjadi, sampai terbentuk kompleks MLn; n adalah bilangan koordinasi dari logam itu, dan menyatakan jumlah maksimum ligan monodentat yang dapat terikat padanya.

Ligan dapat dengan baik diklassifikasikan atas dasar banyaknya titik-lekat kepada ion logam. Begitulah, ligan-ligan sederhana, seperti ion-ion halida atau molekul-molekul H2O atau NH3, adalah monodentat, yaitu ligan itu terikat pada ion logam hanya pada satu titik oleh penyumbangan satu pasanagan-elektron-menyendiri kepada logam. Namun, bila molekul atau ion ligan itu mempunyai dua atom, yang masing-masing mempunyai satu pasangan elektron menyendiri, maka molekul itu mempunyai dua atom-penyumbang, dan adalah mungkin untuk membentuk dua ikatan-koordinasi dengan ion logam yang sama; ligan seperti ini disebut bidentat dan sebagai contohnya dapatlah diperhatikan kompleks tris(etilenadiamina) kobalt(III), [Co(en)3]3+. Dalam kompleks oktahedral berkoordinat-6 (dari) kobalt(III), setiap molekul etilenadiamina bidentat terikat pada ion logam itu melalui pasangan elktron menyendiri dari kedua ataom nitrogennya. Ini menghasilkan terbentuknya tiga cincin beranggota-5, yang masing-masing meliputi ion logam itu; proses pembentukan cincin ini disebut penyepitan (pembentukan sepit atau kelat).

Ligan multidentat mengandung lebih dari dua atom-koordinasi per molekul, misalnya asam 1,2-diaminoetanatetraasetat (asam etilenadiaminatetraasetat, EDTA) yang mempunyai dua atom nitrogen-penyumbang dan empat atom oksigen-penyumbang dalam molekul, dapat merupakan heksadentat.

Spesi-spesi yang lompleks itu tak mengandung lebih dari satu ion logam, tetapi pada kondisi-kondisi yang sesuai, suatu kompleks binuklir, yaitu kompleks yang mengandung dua ion logam, atau bahkan suatu komleks polinuklir, yang mengansung lebih dari dua ion logam, dapat terbentuk. Begitulah, interaksi antar ion Zn2+ dan Cl- dapat menimbulkan pembentukan kompleks binuklir, misalnya [Zn2Cl6]2- disamping spesi seederhana seperti ZnCl3- dan ZnCl42-. Pembentukan kompleks binuklir dan polinuklir jelas akan lebih diuntungkan oleh konsentrasi yang tinggi ion logam itu; jika yang terakhir ini berada sebagai konstitusi runutan dari larutan, kompleks-kompleks polinuklir sangat kecil kemungkinannya akan terbentuk.


FUNGSI PLATINUM (Pt) DALAM KESEHATAN

1. Platinum bersifat hypoallergic. Platinum merupakan satu-satunya logam yang cocok sebagai elektroda untuk alat pemicu jantung (heart pacemakers). Selain itu, banyak dalam kasus patah tulang, tulang disambung menggunakan platinum

2. Platinum merupakan bahan non-organik yang dapat digunakan untuk terapi kanker. Cisplatin atau cisplatinum (cis-diamminedichloridoplatinum(II), CDDP) merupakan kemoterapi yang berbasiskan platinum. Biasanya, Cisplatin digunakan dalam terapi kanker seperti , sarcoma, carcinoma (misalnya, kanker paru-paru dan kanker ovarium), lymphoma dan sel tumor.

FUNGSI LAIN PLATINUM

1.Walaupun Emas dan Platinum sama sama tidak mudah teroksidasi, atom platinum bersifat lebih kalalytic dibanding atom emas. Sebuah lapisan emas, jika tergores (tergores disini dalam arti mikro, bukan goresan yang kasat mata), atom-atom emas ini akan benar-benar hilang, meninggalkan daerah kosong yang tidak ditempati oleh atom emas. Goresan mikro pada emas putih, jika dibiarkan kelamaan, akan menimbulkan efek kuning kumal yang kasat mata. Beda halnya dengan platinum. Jika sebuah lapisan platinum tergores (secara micro), atom-atom nya tidaklah benar benar hilang, namun cuma bergeser tempat. Artinya, atom platinum masih ada. Inilah alasan, setelah beberapa lama, sebuah perhiasan emas perlu disepuh kembali agar tetap kelihatan mengkilat seperti baru. Untuk menyepuh emas, diperlukan logam tambahan, sesuai dengan jenis emas apa yang anda miliki. Dalam proses penyepuhan ini (dalam kimia disebut elektroplating), kita benar-benar menambahkan atom baru ke emas tersebut. Biasanya, emas putih akan disepuh dengan nikel atau rhodium. Berbeda dengan platinum yang tidak perlu disepuh. Perhiasan platinum yang terlihat tidak kinclong lagi, cukup dibawa ke toko/ahli perhiasan. Disana, si ahli perhiasan cuma akan mem-polish/burnish platinum anda, tanpa menambahkan bahan lain ke perhiasan platinum anda. Karena sifat inilah, platinum menjadi lebih favorit dibanding emas. Perhiasan emas memang lebih murah, namun biaya pemeliharaannya akan jauh lebih besar dibanding perhiasan platinum. Jadi, jika uang anda berlebih, memang lebih baik membeli perhiasan platinum.

2. Platinum memiliki sifat mekanik, fisik dan elektrik yang sangat menarik. Dibanding emas, Platinum lebih keras namun juga lebih mudah untuk ditempa. a). Platinum dapat ditempa seperti layaknya aluminum foil, namun lebih tipis dengan ketebalan hanya 100 atom platinum. b). Titik leleh platinum, 1768,3 OC, jauh lebih tinggi dibanding emas, hampir dua kalinya. Ini yang membuat platinum merupakan bahan favorit di laboratorium untuk studi temperatur dan tekanan tinggi. Berbeda dengan emas, Platinum pada suhu tinggi bersifat stabil. c). Campuran platinum dan cobalt akan menghasilkan salah satu magnet terkuat yang kita kenal.

3. Di bidang surface-science, untuk mengamati singe atom, lebih sering digunakan jarum yang terbuat dari platinum. Akan lebih mudah membuat jarum platinum yang diujungnya cuma ada satu atom dibanding menggunakan jarum jenis lain. Dengan ini, resolusi data anda akan jauh lebih tinggi. Sayangnya, jarum platinum sangat lah mahal.

4. Coba lihat hard disk anda, platinum banyak digunakan dalam pembuatan hard disk saat ini, karena hard disk akan lebih tahan lama.



Rabu, 16 Desember 2009

CHROMIUM UNTUK TERAPI DIABETES

Bagaimana efek sampingnya? Sebuah studi dari Dartmouth College menemukan, chromium picolinate bisa merusak materi genetik pada sel-sel hewan hamster. Studi lain yang dilakukan oleh Dr. John Vincent dari University of Alabama di Tuscaloosa menemukan, chromium picolinate akan masuk ke dalam sel-sel secara langsung dan tinggal di sana, dan menimbulkan gangguan. Chroium picolinate berinteraksi dengan vitamin C serta antioksidan lain di dalam sel untuk memproduksi bentuk turunan dari chromium yang bisa menyebabkan mutasi DNA, materi genetik. Kombinasi chromium dan picolinate (khsusnya bentuk turunannya) bisa meproduksi komponen berbahaya. Selain itu, picolinate akhirnya akan pecah dan menimbulkan efek yang merugikan.

Chromium Picolinate merupakan chromium generasi baru yang telah dipatenkan dan lebih mudah diserap oleh tubuh. Chromium berperan penting pada metabolisme dan penggunaan karbohidrat, sintesa asam lemak, kolesterol dan protein. Makanan ala modern yang banyak dikonsumsi masyarakat saat ini sangat sedikit kandungan Chromiumnya. Kekurangan Cromium dapat menyebabkan kelelahan, kegelisahan, diabetes, gangguan metabolisme asam amino dan meningkatkan resiko aterosklerosis.

Bagaimana cara kerjanya? Mekanisme kerja chromium picolinate dalam meningkatkan efisiensi insulin masih belum bisa dijelaskan dari hasil penelitian ini. Akan tetapi, ada beberapa yang mengklaim peningkatan efisiensi insulin menyebabkan peningkatan produksi serotonin, yang secara perlahan akan mengurangi selera makan. Ada juga yang menemukan kalau chromium berfungsi mengatur proses produksi lemak dalam tubuh, sehingga mencegah pembentukan lemak berlebih. Satu hipotesis menyatakan kalau chromium picolinate meningkatkan sintesis protein, yang selanjutnya akan menstimulasi pertumbuhan otot. Manfaat Chromium picolinate :
1. Menjaga keseimbangan kadar gula darah dan meningkatkan efisiensi kerja insulin.
2. Chromium sering disebut sebagai “Glucose Tolerance Factor” (faktor pengendali kadar gula darah) dibutuhkan pada proses pengolahan glukosa menjadi energi.
3. Membantu menurunkan berat badan dengan cara membakar lemak menjadi energi.
4. Menurunkan kolesterol dan trigliserid sehingga dapat menjaga kesehatan jantung.
5. Meningkatkan massa otot sehingga dapat membentuk otot yang ideal.
6. Membantu sintesa kolesterol, lemak dan protein serta meningkatkan jaringan otot.
Suplementasi membantu Anda untuk membantu metabolisme tubuh. Bagi para penderita diabetes, suplementasi ditujukan untuk membantu metabolisme karbohidrat dan lemak dengan lebih baik. Suplementasi dengan Chromium Picolinate mampu meningkatkan sensitifitas insulin tubuh sehingga membantu mencerna gula atau karbohidrat dengan lebih baik yang mutlak diperlukan bagi penderita diabetes. Selain itu Chromium Picolinate berguna untuk mengurangi rasa lapar dan nafsu makan. 
Membantu Sensitifitas Insulin
Salah satu permasalahan utama pada penderita diabetes adalah kurangnya sensitifitas insulin, sehingga insulin tidak bekerja dengan baik. Suplementasi Chromium Picolinate mampu memperbaiki kinerja insulin dalam tubuh sehingga dapat mengontrol gula darah dengan lebih baik.
Kromium termasuk logam mineral yang jumlahnya sedikit, baik dalam makanan maupun pada tubuh manusia, tetapi sangat penting bagi kesehatan. Nutrien ini tergolong essential trace mineral (mineral penting yang dibutuhkan dalam jumlah kecil) karena tidak dapat diproduksi oleh tubuh sehingga harus dipasok dari makanan sehari-hari. Karena sedikitnya kebutuhan kromium ini hingga sering tak diperhitungkan padahal zat ini sangat diperlukan bagi hampir semua jaringan tubuh manusia, termasuk kulit, otak, otot, limpa, ginjal dan testis. 
Kromium berasal dari bebatuan dalam perut bumi dan hanya tumbuh-tumbuhan yang bisa langsung menyerap mineral dari tanah. Kandungan kromium yang ada dalam tanah di mana tumbuhan tumbuh menentukan kadar zat itu. Cukup konsumsi “makanan hidup” seperti buah-buahan segar dan sayuran dan makanan alami lainnya setiap hari dapat menghindari resiko kekurangan kromium. Tetapi karena banyaknya penggunaan zat-zat kimia dan pengoalahan yang berlebihan menyebabkan jumlah kromium berkurang, sehingga kebutuhan ini perlu dibantu dengan mengkonsumsi suplemennya. 
Sumber kromium bisa didapatkan dari wholegrains (beras merah, raw oats, kedelai,dsb), buah dan sayuran segar, kentang, ikan laut, jamur reishishiitake, dan kuning telur (jangan berlebihan). 
atau Kromium berperan untuk mengendalikan metabolisme insulin dalam tubuh, sehingga faktor pengendali kadar gula darah (glucose tolerance factor / GTF). Dengan adanya kromium ini pemanfaatan insulin tubuh lebih efisien dan keseimbangan kadar gula darah terjaga. Kromium juga membantu proses pencernaan protein dan lemak. Penelitian membuktikan bahwa kromium dapat menurunkan kadar trigliserid dan kelebihan total kolesterol darah, sekaligus memperbaiki rasio LDL (kolesterol ‘jahat’) dan HDL (kolesterol ‘baik’). 
Sejumlah penelitian di Amerika memperlihatkan pemberian suplemen kromium dengan dosis 2 mg per hari dapat menurunkan kadar kolesterol 15 persen. Selain itu juga menunjukkan bahwa kromium dapat memperbaiki kadar kolesterol dalam darah, mengurangi pengapuran (pembentukan plak) dalam pembuluh darah. 
Suplemen kromium umumnya digunakan dalam terapi penyakit yang berkaitan dengan gangguan penyerapan dan metabolisasi gula darah seperti hipoglikemia (tekanan gula darah terlalu rendah) dan diabetes militus. Bagi pengidap resistensi insulin dapat mencegah resiko penyakit diabetes. Lonjakan gula darah yang tak terkendali diketahui dapat mengurangi produksi seretonin (hormon yang mengendalikan emosi, rasa sakit, pola makan) di otak. Kromium dapat mengatasi sakit kepala dan sejumlah gangguan emosi akibat hipoglikemia. 
Penyerapan kromium oleh tubuh cenderung lamban, tetapi keluarnya dari tubuh malah sebaliknya, sangat mudah. Karena itu resiko kelebihan atau keracunan jarang terjadi.walaupun belum ada angka resmi kecukupan kromium, tetapi kemampuan tubuh menyerap kromium hanya 2 % sehingga sedikitnya diperlukan 100-200 mcg kromium per hari dari makanan. Anak-anak hanya perlu sedikit dari jumlah tersebut. 
Kebanyakan suplemen dijual dalam bentuk dosis 200 mcg, berupa kapsul, softgel, tablet atau cairan. Dosis tersebut merupakan dosis maksimalyang cukup aman. Dapat digunakan untuk kesehatan umum atau bagian terapi penurunan berat badan, juga terapi hipoglikemia (tekanan gula darah terlalu rendah).
Kromium harus dikonsumsi bersama makanan atau segelas penuh air atau jus buah. Jika dikonsumsi dengan perut kosong dapat mengakibatkan iritasi pada lambung. Kromium lebih mudah diserap dengan suplemen vitamin C atau makanan yang kaya vitamin C. Hindari konsumsi kalsium karbonat atau antacid (obat maag) pada saat yang bersamaan karena dapat menurunkan kualitas penyerapan kromium. Kebanyakan kromium dijual sebagai chromium picolinate atau polynicotinate. 
Untuk penderita diabetes sebaiknya konsultasi dulu dengan dokter sebelum memutuskan memakai suplemen kromium, karena dapat mengubah kebutuhan akan insulin dan berbagai obat penyakit diabetes lainnya.



CHROMIUM UNTUK TERAPI DIABETES

Bagaimana efek sampingnya? Sebuah studi dari Dartmouth College menemukan, chromium picolinate bisa merusak materi genetik pada sel-sel hewan hamster. Studi lain yang dilakukan oleh Dr. John Vincent dari University of Alabama di Tuscaloosa menemukan, chromium picolinate akan masuk ke dalam sel-sel secara langsung dan tinggal di sana, dan menimbulkan gangguan. Chroium picolinate berinteraksi dengan vitamin C serta antioksidan lain di dalam sel untuk memproduksi bentuk turunan dari chromium yang bisa menyebabkan mutasi DNA, materi genetik. Kombinasi chromium dan picolinate (khsusnya bentuk turunannya) bisa meproduksi komponen berbahaya. Selain itu, picolinate akhirnya akan pecah dan menimbulkan efek yang merugikan.

Chromium Picolinate merupakan chromium generasi baru yang telah dipatenkan dan lebih mudah diserap oleh tubuh. Chromium berperan penting pada metabolisme dan penggunaan karbohidrat, sintesa asam lemak, kolesterol dan protein. Makanan ala modern yang banyak dikonsumsi masyarakat saat ini sangat sedikit kandungan Chromiumnya. Kekurangan Cromium dapat menyebabkan kelelahan, kegelisahan, diabetes, gangguan metabolisme asam amino dan meningkatkan resiko aterosklerosis.

Bagaimana cara kerjanya? Mekanisme kerja chromium picolinate dalam meningkatkan efisiensi insulin masih belum bisa dijelaskan dari hasil penelitian ini. Akan tetapi, ada beberapa yang mengklaim peningkatan efisiensi insulin menyebabkan peningkatan produksi serotonin, yang secara perlahan akan mengurangi selera makan. Ada juga yang menemukan kalau chromium berfungsi mengatur proses produksi lemak dalam tubuh, sehingga mencegah pembentukan lemak berlebih. Satu hipotesis menyatakan kalau chromium picolinate meningkatkan sintesis protein, yang selanjutnya akan menstimulasi pertumbuhan otot. Manfaat Chromium picolinate :
1. Menjaga keseimbangan kadar gula darah dan meningkatkan efisiensi kerja insulin.
2. Chromium sering disebut sebagai “Glucose Tolerance Factor” (faktor pengendali kadar gula darah) dibutuhkan pada proses pengolahan glukosa menjadi energi.
3. Membantu menurunkan berat badan dengan cara membakar lemak menjadi energi.
4. Menurunkan kolesterol dan trigliserid sehingga dapat menjaga kesehatan jantung.
5. Meningkatkan massa otot sehingga dapat membentuk otot yang ideal.
6. Membantu sintesa kolesterol, lemak dan protein serta meningkatkan jaringan otot.
Suplementasi membantu Anda untuk membantu metabolisme tubuh. Bagi para penderita diabetes, suplementasi ditujukan untuk membantu metabolisme karbohidrat dan lemak dengan lebih baik. Suplementasi dengan Chromium Picolinate mampu meningkatkan sensitifitas insulin tubuh sehingga membantu mencerna gula atau karbohidrat dengan lebih baik yang mutlak diperlukan bagi penderita diabetes. Selain itu Chromium Picolinate berguna untuk mengurangi rasa lapar dan nafsu makan. 
Membantu Sensitifitas Insulin
Salah satu permasalahan utama pada penderita diabetes adalah kurangnya sensitifitas insulin, sehingga insulin tidak bekerja dengan baik. Suplementasi Chromium Picolinate mampu memperbaiki kinerja insulin dalam tubuh sehingga dapat mengontrol gula darah dengan lebih baik.
Kromium termasuk logam mineral yang jumlahnya sedikit, baik dalam makanan maupun pada tubuh manusia, tetapi sangat penting bagi kesehatan. Nutrien ini tergolong essential trace mineral (mineral penting yang dibutuhkan dalam jumlah kecil) karena tidak dapat diproduksi oleh tubuh sehingga harus dipasok dari makanan sehari-hari. Karena sedikitnya kebutuhan kromium ini hingga sering tak diperhitungkan padahal zat ini sangat diperlukan bagi hampir semua jaringan tubuh manusia, termasuk kulit, otak, otot, limpa, ginjal dan testis. 
Kromium berasal dari bebatuan dalam perut bumi dan hanya tumbuh-tumbuhan yang bisa langsung menyerap mineral dari tanah. Kandungan kromium yang ada dalam tanah di mana tumbuhan tumbuh menentukan kadar zat itu. Cukup konsumsi “makanan hidup” seperti buah-buahan segar dan sayuran dan makanan alami lainnya setiap hari dapat menghindari resiko kekurangan kromium. Tetapi karena banyaknya penggunaan zat-zat kimia dan pengoalahan yang berlebihan menyebabkan jumlah kromium berkurang, sehingga kebutuhan ini perlu dibantu dengan mengkonsumsi suplemennya. 
Sumber kromium bisa didapatkan dari wholegrains (beras merah, raw oats, kedelai,dsb), buah dan sayuran segar, kentang, ikan laut, jamur reishishiitake, dan kuning telur (jangan berlebihan). 
atau Kromium berperan untuk mengendalikan metabolisme insulin dalam tubuh, sehingga faktor pengendali kadar gula darah (glucose tolerance factor / GTF). Dengan adanya kromium ini pemanfaatan insulin tubuh lebih efisien dan keseimbangan kadar gula darah terjaga. Kromium juga membantu proses pencernaan protein dan lemak. Penelitian membuktikan bahwa kromium dapat menurunkan kadar trigliserid dan kelebihan total kolesterol darah, sekaligus memperbaiki rasio LDL (kolesterol ‘jahat’) dan HDL (kolesterol ‘baik’). 
Sejumlah penelitian di Amerika memperlihatkan pemberian suplemen kromium dengan dosis 2 mg per hari dapat menurunkan kadar kolesterol 15 persen. Selain itu juga menunjukkan bahwa kromium dapat memperbaiki kadar kolesterol dalam darah, mengurangi pengapuran (pembentukan plak) dalam pembuluh darah. 
Suplemen kromium umumnya digunakan dalam terapi penyakit yang berkaitan dengan gangguan penyerapan dan metabolisasi gula darah seperti hipoglikemia (tekanan gula darah terlalu rendah) dan diabetes militus. Bagi pengidap resistensi insulin dapat mencegah resiko penyakit diabetes. Lonjakan gula darah yang tak terkendali diketahui dapat mengurangi produksi seretonin (hormon yang mengendalikan emosi, rasa sakit, pola makan) di otak. Kromium dapat mengatasi sakit kepala dan sejumlah gangguan emosi akibat hipoglikemia. 
Penyerapan kromium oleh tubuh cenderung lamban, tetapi keluarnya dari tubuh malah sebaliknya, sangat mudah. Karena itu resiko kelebihan atau keracunan jarang terjadi.walaupun belum ada angka resmi kecukupan kromium, tetapi kemampuan tubuh menyerap kromium hanya 2 % sehingga sedikitnya diperlukan 100-200 mcg kromium per hari dari makanan. Anak-anak hanya perlu sedikit dari jumlah tersebut. 
Kebanyakan suplemen dijual dalam bentuk dosis 200 mcg, berupa kapsul, softgel, tablet atau cairan. Dosis tersebut merupakan dosis maksimalyang cukup aman. Dapat digunakan untuk kesehatan umum atau bagian terapi penurunan berat badan, juga terapi hipoglikemia (tekanan gula darah terlalu rendah).
Kromium harus dikonsumsi bersama makanan atau segelas penuh air atau jus buah. Jika dikonsumsi dengan perut kosong dapat mengakibatkan iritasi pada lambung. Kromium lebih mudah diserap dengan suplemen vitamin C atau makanan yang kaya vitamin C. Hindari konsumsi kalsium karbonat atau antacid (obat maag) pada saat yang bersamaan karena dapat menurunkan kualitas penyerapan kromium. Kebanyakan kromium dijual sebagai chromium picolinate atau polynicotinate. 
Untuk penderita diabetes sebaiknya konsultasi dulu dengan dokter sebelum memutuskan memakai suplemen kromium, karena dapat mengubah kebutuhan akan insulin dan berbagai obat penyakit diabetes lainnya.



SENG

Sejarah

(Jerman: zink) Berabad-abad sebelum seng dikenal sebagai unsur tersendiri yang unik, bijih seng telah digunakan dalam pembuatan kuningan. Campuran logam yang mengandung 87% seng telah ditemukan di reruntuhan daerah Transylvania purba.

Logam seng telah diproduksi dalam abat ke-13 di Indina dengan mereduksi calamine dengan bahan-bahan organik seperti kapas. Logam ini ditemukan kembali di Eropa oleh Marggraf di tahun 1746, yang menunjukkan bahwa unsur ini dapat dibuat dengan cara mereduksi calamine dengan arang.

Sumber seng
Bijih-bijih seng yang utama adalah sphalerita (sulfida), smithsonite (karbonat), calamine (silikat) dan franklinite (zine, manganese, besi oksida). Satu metoda dalam mengambil unsur ini dari bijihnya adalah dengan cara memanggang bijih seng untuk membentuk oksida dan mereduksi oksidanya dengan arang atau karbon yang dilanjutkan dengan proses distilasi.

Isotop
Seng alami mengandung 5 isotop. Ada 16 isotop seng lainnya yang labil.

Sifat-sifat seng
Seng memiliki warna putih kebiruan. Logam ini rapuh pada suhu biasa tetapi mudah dibentuk pada 100-150 derajat Celcius. Ia dapat mengalirkan listrik walau tidak seefektif tembaga dan terbakar di udara pada suhu tinggi merah menyala dengan evolusi awan putih oksida.

Unsur ini juga menunjukkan sifat yang sangat mudah dibentuk (superplasticity). Seng maupun zirkonium tidak memiliki sifat magnet. Tetapi ZrZn2 menunjukkan sifat kemagnetan pada suhu dibawah 35 derajat Kelvin. Senyawa ini memiliki sifat-sifat kelistrikan, panas, optik dan solid-state yang unik tetapi belum sepenuhnya dimengerti.

Kegunaan
Logam ini digunakan untuk membentuk berbagai campuran logam dengan metal lain. Kuningan, perak nikel, perunggu, perak Jerman, solder lunak dan solder aluminium adalah beberapa contoh campuran logam tersebut. Seng dalam jumlah besar digunakan untuk membuat cetakan dalam industri otomotif, listrik, dan peralatan lain semacamnya. Campuran logam Prestal, yang mengandung 78% seng dan 22% aluminium dilaporkan sekuat baja tapi sangat mudah dibentuk seperti plastik. Prestal sangat mudah dibentuk dengan cetakan murah dari keramik atau semen. Seng juga digunakan secara luas untuk menyepuh logam-logam lain dengan listrik seperti besi untuk menghindari karatan. Seng oksida banyak digunakan dalam pabrik cat, karet, kosmetik, farmasi, alas lantai, plastik, tinta, sabun, baterai, tekstil, alat-alat listrik dan produk-produk lainnya. Lithopone, campuran seng sulfida dan barium sulfat merupakan pigmen yang penting. Seng sulfida digunakan dalam membuat tombol bercahaya, sinar X, kaca-kaca TV, dan bola-bola lampu fluorescent. Klorida dan kromat unsur ini juga merupakan senyawa yang banyak gunanya. Seng juga merupakan unsur penting dalam pertumbuhan manusia dan binatang. Banyak tes menunjukkan bahwa binatang memerlukan 50% makanan tambahan untuk mencapai berat yang sama dibanding binatang yang disuplemen dengan zat seng yang cukup.

Penanganan terhadap seng
Seng tidak dianggap beracun, tetapi jika senyawa ZnO yang baru dibentuk terhirup, penyakit yang disebut oxide shakes atau zinc chills kadang-kadang bisa muncul. Perlu ventilasi yang cukup untuk ruangan yang menyimpan seng oksida untuk menghindari konsentrasi yang lebih dari 5 gram/m3 (dirata-ratakan berdasarkan berat untuk 8 jam pengeksposan, 40 jam per minggu).

Aqua regia (bahasa Latin yang berarti "air kerajaan") adalah larutan yang dibuat dari percampuran asam klorida pekat dan asam nitrat pekat dengan perbandingan 3:1. Larutan ini bersifat sangat korosif, mengeluarkan uap berwarna kuning. Hanya larutan inilah yang sanggup melarutkan emas dan platina (logam-logam yang paling mulia menurut deret Volta), oleh karenanyalah disebut sebagai aqua regia atau Air Raja. Karena sifatnya yang kurang stabil, maka larutan ini baru dibuat jika akan dipakai.

SEMEN
Dalam perkembangan peradaban manusia khususnya dalam hal bangunan, tentu kerap mendengar cerita tentang kemampuan nenek moyang merekatkan batu-batu raksasa hanya dengan mengandalkan zat putih telur, ketan atau lainnya. Alhasil, berdirilah bangunan fenomenal, seperti Candi Borobudur atau Candi Prambanan di Indonesia ataupun jembatan di Cina yang menurut legenda menggunakan ketan sebagai perekat. Ataupun menggunakan aspal alam sebagaimana peradaban di Mahenjo Daro dan Harappa di India ataupun bangunan kuno yang dijumpai di Pulau Buton

Benar atau tidak, cerita, legenda tadi menunjukkan dikenalnya fungsi semen sejak zaman dahulu. Sebelum mencapai bentuk seperti sekarang, perekat dan penguat bangunan ini awalnya merupakan hasil percampuran batu kapur dan abu vulkanis. Pertama kali ditemukan di zaman Kerajaan Romawi, tepatnya di Pozzuoli, dekat teluk Napoli, Italia. Bubuk itu lantas dinamai pozzuolana.

Sedangkan kata semen sendiri berasal dari caementum (bahasa Latin), yang artinya kira-kira "memotong menjadi bagian-bagian kecil tak beraturan". Meski sempat populer di zamannya, nenek moyang semen made in Napoli ini tak berumur panjang. Menyusul runtuhnya Kerajaan Romawi, sekitar abad pertengahan (tahun 1100 - 1500 M) resep ramuan pozzuolana sempat menghilang dari peredaran.
Pabrik semen di Australia.

Baru pada abad ke-18 (ada juga sumber yang menyebut sekitar tahun 1700-an M), John Smeaton - insinyur asal Inggris - menemukan kembali ramuan kuno berkhasiat luar biasa ini. Dia membuat adonan dengan memanfaatkan campuran batu kapur dan tanah liat saat membangun menara suar Eddystone di lepas pantai Cornwall, Inggris.

Ironisnya, bukan Smeaton yang akhirnya mematenkan proses pembuatan cikal bakal semen ini. Adalah Joseph Aspdin, juga insinyur berkebangsaan Inggris, pada 1824 mengurus hak paten ramuan yang kemudian dia sebut semen portland. Dinamai begitu karena warna hasil akhir olahannya mirip tanah liat Pulau Portland, Inggris. Hasil rekayasa Aspdin inilah yang sekarang banyak dipajang di toko-toko bangunan.

Sebenarnya, adonan Aspdin tak beda jauh dengan Smeaton. Dia tetap mengandalkan dua bahan utama, batu kapur (kaya akan kalsium karbonat) dan tanah lempung yang banyak mengandung silika (sejenis mineral berbentuk pasir), aluminium oksida (alumina) serta oksida besi. Bahan-bahan itu kemudian dihaluskan dan dipanaskan pada suhu tinggi sampai terbentuk campuran baru.

Selama proses pemanasan, terbentuklah campuran padat yang mengandung zat besi. Nah, agar tak mengeras seperti batu, ramuan diberi bubuk gips dan dihaluskan hingga berbentuk partikel-partikel kecil mirip bedak.
Pengaduk semen sederhana.

Lazimnya, untuk mencapai kekuatan tertentu, semen portland berkolaborasi dengan bahan lain. Jika bertemu air (minus bahan-bahan lain), misalnya, memunculkan reaksi kimia yang sanggup mengubah ramuan jadi sekeras batu. Jika ditambah pasir, terciptalah perekat tembok nan kokoh. Namun untuk membuat pondasi bangunan, campuran tadi biasanya masih ditambah dengan bongkahan batu atau kerikil, biasa disebut concrete atau beton.

Beton bisa disebut sebagai mahakarya semen yang tiada duanya di dunia. Nama asingnya, concrete - dicomot dari gabungan prefiks bahasa Latin com, yang artinya bersama-sama, dan crescere (tumbuh). Maksudnya kira-kira, kekuatan yang tumbuh karena adanya campuran zat tertentu. Dewasa ini, nyaris tak ada gedung pencakar langit berdiri tanpa bantuan beton.

Meski bahan bakunya sama, "dosis" semen sebenarnya bisa disesuaikan dengan beragam kebutuhan. Misalnya, jika kadar aluminanya diperbanyak, kolaborasi dengan bahan bangunan lainnya bisa menghasilkan bahan tahan api. Ini karena sifat alumina yang tahan terhadap suhu tinggi. Ada juga semen yang cocok buat mengecor karena campurannya bisa mengisi pori-pori bagian yang hendak diperkuat.

Kandungan kimia semen

  * Trikalsium Silikat
  * Dikalsium Silikat
  * Trikalsium Aluminat
  * Tetrakalsium Aluminofe
  * Gipsum


Langkah Utama Proses Produksi Semen adalah:

  1. Penggalian/Quarrying:Terdapat dua jenis material yang penting bagi produksi semen: yang pertama adalah yang kaya akan kapur atau material yang mengandung kapur (calcareous materials) seperti batu gamping, kapur, dll., dan yang kedua adalah yang kaya akan silika atau material mengandung tanah liat (argillaceous materials) seperti tanah liat. Batu gamping dan tanah liat dikeruk atau diledakkan dari penggalian dan kemudian diangkut ke alat penghancur.
  2. Penghancuran: Penghancur bertanggung jawab terhadap pengecilan ukuran primer bagi material yang digali.
  3. Pencampuran Awal: Material yang dihancurkan melewati alat analisis on-line untuk menentukan komposisi tumpukan bahan.
  4. Penghalusan dan Pencampuran Bahan Baku: Sebuah belt conveyor mengangkut tumpukan yang sudah dicampur pada tahap awal ke penampung, dimana perbandingan berat umpan disesuaikan dengan jenis klinker yang diproduksi. Material kemudian digiling sampai kehalusan yang diinginkan.
  5. Pembakaran dan Pendinginan Klinker: Campuran bahan baku yang sudah tercampur rata diumpankan ke pre-heater, yang merupakan alat penukar panas yang terdiri dari serangkaian siklon dimana terjadi perpindahan panas antara umpan campuran bahan baku dengan gas panas dari kiln yang berlawanan arah. Kalsinasi parsial terjadi pada pre‐heater ini dan berlanjut dalam kiln, dimana bahan baku berubah menjadi agak cair dengan sifat seperti semen. Pada kiln yang bersuhu 1350-1400°C, bahan berubah menjadi bongkahan padat berukuran kecil yang dikenal dengan sebutan klinker, kemudian dialirkan ke pendingin klinker, dimana udara pendingin akan menurunkan suhu klinker hingga mencapai 100 °C.
  6. Penghalusan Akhir: Dari silo klinker, klinker dipindahkan ke penampung klinker dengan dilewatkan timbangan pengumpan, yang akan mengatur perbandingan aliran bahan terhadap bahan-bahan aditif. Pada tahap ini, ditambahkan gipsum ke klinker dan diumpankan ke mesin penggiling akhir. Campuran klinker dan gipsum untuk semen jenis 1 dan campuran klinker, gipsum dan posolan untuk semen jenis P dihancurkan dalam sistim tertutup dalam penggiling akhir untuk mendapatkan kehalusan yang dikehendaki. Semen kemudian dialirkan dengan pipa menuju silo semen.

Jenis semen :
No. SNI 15-0129-2004 = Semen portland putih
No. SNI 15-0302-2004 = Semen portland pozolan / Portland Pozzolan Cement (PPC)
No. SNI 15-2049-2004 = Semen portland / Ordinary Portland Cement (OPC)
No. SNI 15-3500-2004 = Semen portland campur
No. SNI 15-3758-2004 = Semen masonry
No. SNI 15-7064-2004 = Semen portland komposit
Pabrik semen di Indonesia antara lain :
  * PT.Indocement Tunggal Prakarsa (Semen Tigaroda)
  * PT.Semen Baturaja Persero (Semen Baturaja)
  * PT.Semen Padang (Semen Padang)
  * PT.Semen Gresik (Semen Gresik)
  * PT.Semen Bosowa (Semen Bosowa)
  * PT.Semen Andalas (Semen Andalas)
  * PT.Semen Cibinong
  * PT.Semen Nusantara
  * PT.Semen Tonasa


Selasa, 10 November 2009

HIDROMETALURGI

Hidrometalurgi merupakan cabang tersendiri dari metalurgi. Secara harfiah hidrometalurgi dapat diartikan sebagai cara pengolahan logam dari batuan atau bijihnya dengan menggunakan pelarut berair (aqueous solution). Dua cabang metalurgi lainnya adalah pirometalurgi dan elektrometalurgi.

Pirometalurgi adalah teknik metalurgi paling tua, dimana logam diolah dan dimurnikan menggunakan panas yang sangat tinggi. Panas didapatkan dari tanur berbahan bakar batubara (kokas) yang sekaligus bertindak sebagai reduktan. Suhu pada proses ini bias mencapai ribuan derajat Celcius.

Elektrometalurgi, seperti namanya, adalah pengolahan bijih logam menjadi logam murni dengan cara elektrokimia. Natrium adalah logam yang paling sering diolah dengan cara ini.

Saat ini hidrometalurgi adalah teknik metalurgi yang paling banyak mendapat perhatian peneliti. Hal ini terlihat dari banyaknya publikasi ilmiah semisal jurnal kimia berskala internasional yang membahas pereduksian logam secara hidrometalurgi. Logam-logam yang banyak mendapat perhatian adalah nikel (Ni), magnesium (Mg), besi (Fe) dan mangan (Mn).

Hidrometalurgi memberikan beberapa keuntungan:

  1. Bijih tidak harus dipekatkan, melainkan hanya harus dihancurkan menjadi bagian-bagian yang lebih kecil.
  2. Pemakaian batubara dan kokas pada pemanggangan bijih dan sekaligus sebagai reduktor dalam jumlah besar dapat dihilangkan.
  3. Polusi atmosfer oleh hasil samping pirometalurgi sebagai belerang dioksida, arsenik(III)oksida, dan debu tungku dapat dihindarkan.
  4. Untuk bijih-bijih peringkat rendah (low grade), metode ini lebih efektif.
  5. Suhu prosesnya relatif lebih rendah.
  6. Reagen yang digunakan relatif murah dan mudah didapatkan.
  7. Produk yang dihasilkan memilki struktur nanometer dengan kemurnian yang tinggi

Pada prinsipnya hidrometalurgi melewati beberapa proses yang dapat disederhanakan tergantung pada logam yang ingin dimurnikan. Salah satu yang saat ini banyak mendapat perhatian adalah logam mangan dikarenakan aplikasinya yang terus berkembang terutama sebagai material sel katodik pada baterai isi ulang. Baterial ion litium konvensional telah lama dikenal dan diketahui memiliki kapasitas penyimpanan energi yang cukup besar. Namum jika katodanya dilapisi lagi dengan logam mangan oksida maka kapasitas penyimpanan energi baterai tersebut menjadi jauh lebih besar.

Secara garis besar, proses hidrometalurgi terdiri dari tiga tahapan yaitu:

  1. Leaching atau pengikisan logam dari batuan dengan bantuan reduktan organik.
  2. Pemekatan larutan hasil leaching dan pemurniannya.
  3. Recovery yaitu pengambilan logam dari larutan hasil leaching.

Reduktan organik adalah hal yang sangat penting dalam proses ini. Reduktan yang dipilih diusahakan tidak berbahaya bagi lingkungan, baik reduktan itu sendiri maupun produk hasil oksidasinya. Kebanyakan reduktan yang digunakan adalah kelompok monomer karbohidrat, turunan aldehid dan keton karena punya gugus fungsi yang mudah teroksidasi. Contohnya adalah proses reduksi mangan dengan adanya glukosa sebagai reduktan:

C6H12O6 + 12MnO2 + 24H+ = 6CO2 + 12Mn2+ + 18H2O

Larutan hasil leaching tersebut kemudian dipekatkan dan dimurnikan. Ada tiga proses pemurnian yang umum digunakan yaitu evaporasi, ekstraksi pelarut dan presipitasi (pengendapan). Di antara ketiganya, presipitasi adalah yang paling mudah dilakukan, juga lebih cepat. Namun cara ini kurang efektif untuk beberapa logam.

Logam hasil pemurnian biasanya diaktivasi dengan asam tertentu terlebih dahulu sebelum diambil dari larutannya. Cara ini menjamin didapatkannya logam dalam struktur nanometer dengan tingkat kemurnian yang lebih tinggi. Logam yang berstruktur nanometer harganya bisa puluhan kali lipat dibandingkan dengan logam yang berstruktur biasa.

Suhu selama proses leaching, konsentrasi reaktan, ukuran partikel sampel dan PH larutan merupakan faktor-faktor yang paling menentukan keberhasilan proses hidrometalurgi. Apabila kita mampu menemukan kombinasi yang tepat dari keempat faktor ini maka proses hidrometalurgi akan semakin optimal. Kedepan diharapkan para ahli teknik kimia dapat menciptakan teknologi yang mampu mengaplikasikan hidrometalurgi agar terpakai lebih luas dalam dunia industri.

DAFTAR KEPUSTAAKAAN

Sugiyarto, Kristian H. 2003. Dasar-dasar Kimia Anorganik Logam. Jurusan Pendidikan Kimia FMIPA Universitas Negeri Yogyakarta. Yogyakarta. Hal: 5.46-5.49.

Pagnanelli.F, Garavini.M, Veglio.F, Toro.L. Journal of Hydrometallurgy 71; Preliminary screening of Purification Processes of liquor Leach Solutins Obtained from Reductive Leaching of Low-Grade manganese Ores. 2004. www..sciendirect.com. Hal 319-327

Sabtu, 31 Oktober 2009


Berilium: Kawan atau Lawan?

Berilium banyak digunakan dalam teknologi-teknologi yang ada sekarang ini, mulai dari mobil dan komputer sampai alat prostetik gigi. Popularitas berilium terkait dengan sifat-sifatnya yang unik antara lain ringan, enam kali lebih keras dari baja, memiliki titik leleh tinggi (1285C) dan kapasitas penyerapan panas, dan tidak bersifat magnetik serta tahan korosi. Berilium juga digunakan untuk tenaga nuklir dan aplikasi senjata. Pada tahun 2000 Amerika Serikat menggunakan 390 ton berilium, dengan total biaya yang diperkirakan $140 juta.

Akan tetapi, logam ini memiliki efek kesehatan negatif: pada individu yang rentan, keterpaparan terhadap berilium menyebabkan sebuah penyakit paru-paru yang disebut penyakit berilium kronis (CBD) – sebuah kondisi yang melemahkan, tidak dapat disembuhkan, dan sering fatal. Dengan meluasnya penggunaan berilium, efek negatif ini sangat memerlukan pemahaman yang lebih baik tentang sifat-sifat kimia berilium pada kondisi-kondisi biologis dan bagaimana hal ini menyebabkan penyakit dan penyembuhannya serta terapi yang potensial.






Sebuah antigen berilium (tengah) terikat ke molekul HLA pada sebuah sel penampak antigen dan dibawa ke sel T, sehingga memicu respon kekebalan

Diduga bahwa respon kekebalan terhadap berilium terpicu ketika unsur yang dihirup tanpa sadar dideteksi oleh sel-sel penampak antigen (APC, lihat gambar). Spesies berilium yang tidak diketahui berfungsi sebagai antigen yang terikat ke molekul HLA (antigen leukosit manusia) pada permukaan APC. Antigen berilium selanjutnya dibawa ke sel T (sel darah putih dengan peranan utama dalam respon kekebalan). Penelitian sekitar 6 tahun yang lalu di Los Alamos menghasilkan gambaran yang lengkap dari spesiasi berilium pada kondisi-kondisi biologis, termasuk interaksinya dengan protein dan konsekuensi imunologi yang ditimbulkan.

Melalui penelitian beberapa kompleks molekul kecil dari berilium, ditemukan bahwa berilium memiliki kecenderungan tinggi untuk menggantikan atom-atom hidrogen pada ikatan hidrogen yang kuat. Ikatan-ikatan ini, yang sering terbentuk antara asam-asam amino yang mengandung gugus karboksilat dan alkohol, membantu memberikan kerangka-dasar yang mendukung struktur dan fungsi protein. Dengan memperluas model ini ke sistem biologis yang nyata, terlihat bahwa berilium menggantikan keseluruhan atom ikatan hidrogen kuat (12 atom) pada transferrin, sebuah protein transport zat besi yang ditemukan dalam plasma darah. Ini merupakan sebuah jalur potensial bagi berilium untuk memasuki sel dengan reseptor-reseptor transferrin. Penelitian-penelitian ini membuka paradigma baru untuk pengikatan berilium dalam sistem biologis yang sebenarnya.

Terkait dengan kecenderungannya untuk menggantikan atom-atom dalam ikatan hidrogen, berilium diketahui membentuk kelompok-kelompok polimetalik dengan gugus-gugus karboksilat. Sehingga telah diduga bahwa berilium juga akan membentuk kelompok-kelompok pada protein yang memiliki banyak residu karboksilat di sekitarnya. Sebuah temuan yang menarik adalah bahwa molekul HLA dari pasien CBD mengandung jumlah residu karboksilat yang lebih besar dibanding molekul HLA dari orang yang tidak menderita CBD. Dan penelitian dengan NMR 9Be menunjukkan kelompok atom berilium yang dijembatani karboksilat itu sebagai sebuah gambaran struktural menyeluruh dari antigen (lihat gambar).

Penelitian dengan menggunakan microarray telah memberikan wawasan lain tentang mekanisme-mekanisme yang mengatur respon kekebalan berilium. Gen-gen perlekatan sel dan chemokin (protein-protein kecil yang memediasi migrasi sel) diregulasi dengan baik dalam sel-sel yang diperlakukan dengan berilium. Ini menunjukkan sebuah mekanisme yang melibatkan gradien-gradien chemokin untuk menarik sel-sel imun ke tempat inflamasi. Disamping itu, sel-sel imun yang diperlakukan dengan berilium menunjukkan pensinyalan intraseluler yang berubah dan pelepasan sitokin ketika merespon terhadap lipopolisakarida – sebuah toksin yang ditemukan dalam membran sel terluar bakteri. Ini menunjukkan bahwa keterpaparan lebih dulu terhadap berilium bisa merubah respon kekebalan host terhadap infeksi bakteri selanjutnya. Implikasi bahwa molekul-molekul perlekatan sel dan chemokin terkait dengan CBD berpotensi memberikan kemungkinan untuk menggunakan molekul-molekul yang merusak regulasi molekul-molekul imun ini untuk menghambat perkembangan gejala-gejala penyakit.

Sebuah pendekatan multidisiplin yang berbasis molekuler untuk meneliti CBD telah berhasil mengidentifikasi spesies-spesies berilium yang relevan, interaksinya dengan protein dan peranan potensialnya dalam penyakit. Ini tidak hanya bisa mengarah pada penyembuhan dan terapi yang potensial untuk CBD, tetapi juga memberikan wawasan tentang mekanisme-mekanisme logam lain dan penyakit-penyakit autoimun.

Disadur dari: http://www.rsc.org/chemistryworld/

Belerang: Superkonduktor yang diharapkan

Unsur belerang dapat ditemukan dalam beberapa bentuk allotropi, dua diantaranya adalah monoklinik dan rhombik belerang seperti gambar yang tertera di bawah ini.




Kanan : Rhombik belerang ; Kiri : Monoklinik Belerang

Kedua-duanya baik monoklinik dan rhombik belerang terbentuk dari delapan atom belerang yang membentuk molekul siklik.






Molekul siklik dari belerang padat (S8)

Rupa dari sulfur pada suhu dan tekanan biasa memiliki sifat isulator arus listrik. Walaupun, penelitian belerang pada tekanan tinggi menunjukkan bukti terjadinya transisi ke struktur berbeda yang merupakan fase logam (superkonduktivitas sering dikaitkan dengan perubahan struktur dari satu struktur kristal logam ke struktur logam lainnya, dimana struktur yang kedua menyimpang dari struktur sebelumnya). Elektromagnet khusus yang didasari oleh superkonduktif material digunakan secara luas di ilmu kedokteran untuk magnetik resonance imaging (MRI). Secara umum, superkonduktif material hanya menunjukkan sifat ini pada temperatur yang sangat rendah, lebih rendah daripada temperature hidrogen cair (20K).

Sifat dari belerang ini sangatlah penting karena fase logamnya memiliki suhu kritis yang sangat tinggi yang melampaui superkonduktivitas dari unsur-unsur benda padat lainnya yang telah diteliti. Lebih lanjut, suhu kritis ini meningkat dengan bertambahnya tekanan, merupakan sifat yang luarbiasa. Sebagai contoh, selenium dan telurium, yang merupakan satu golongan dengan belerang, menunjukkan sifat yang berbeda. Belum ada yang tahu bagaimana menjelaskan fenomena tersebut. Makna dari hasil penelitian tersebut adalah bahwa belerang membuka kesempatan untuk pengembanhan dari percobaan teori superkonduktivitas. Para peneliti sedang merencanakan untuk meningkatkan tekanan guna mempelajari sifat yang luarbiasa ini. [SS

Air Berperan Sebagai Katalis Dalam Proses Peledakan

Bahan mentah yang paling berlimpah di bumi telah diketahui dapat memperlihatkan sebagai bahan kimia yang tidak semestinya ketika diletakkan pada kondisi yang sangat ekstrim.

Baru-baru ini, para ilmuwan di Laboratorium Nasional Awrence Livermore telah memperlihatkan sesuatu hasil penelitian yang menarik bahwa air, jika diletakkan pada pada suhu kamar panas, berperan sebagai katalisasi complex dalam reaksi bahan peledak yang tak terbayangkan sebelumnya. Sebelumnya katalis hanya dapat berupa platinum dan enzim tapi untuk air sangat jarang sekali.

Letusan berasal dari bahan peledak yang terbuat dari oksigen dan hydrogen yang dapat memproduksi air pada suhu 1000 derajat dan bertekanan lebih dari 100,000 atm.

Dengan menggunakan prinsip terdahulu dari stimulasi atomistic peledakan bahan bakar tingkat tinggi PETN (penta erythritol tetranitrate) tim ilmuwan ini telah menemukan hal tersebut di air, ketika atom hydrogen bekerja sebagai reduktor dan hydrogen sebagai oksidator, atom-atom ini bertindak sebagai kelompok dinamik yang membawa oksigen selama reaksi berlangsung.

Dalam simulasi molekul dinamik dengan menggunakan Blue Gene super komputer Laboratorium , Wu dan Larry Fried, Lin Ynag, Nir Goldman dan Sorin Bastea telah menemukan atom hydrogen (H) dan hidroksida (OH) di air yang membawa oksigen dari gudang nitrogen menuju bahan bakar karbon (dengan suhu bertemperatur antara 3000-4200 Kelvin). Pada kondisi seperti itu, air bekerja sebagai produk akhir dan katalis kimia yang sangat penting.

Untuk molekul berkekuatan bahan peledak tinggi yang terbuat dari karbon, nitrogen, oksigen dan hydrogen seperti PETN, 3 produk utama gas nya adalah air, karbon dioksida dan molekul nitrogen.

Tim ilmuwan ini telah menemukan bahwa nitrogen kehilangan oksigen lebih banyak daripada hydrogen dan karbon walaupun konsentrasi air telah mencapai keseimbangan.

” Air merupakan bagian dari energi. Mekanisme katalis secara keseluruhan berbeda dengan komposisi sebelumnya yang hanya sebagai produk akhir ” kata Wu. Penemuan terbaru ini bermaksud agar para ilmuwan mempelajari keadaan yang terjadi di planet Uranus dan Neptunus. Dimana airnya yang mempunyai bentuk yang luar biasa.

Sumber: http://www.chemistrytimes.com/research/Water_acts_as_catalyst_in_explosives.asp

Selasa, 13 Oktober 2009

warna logam

APA WARNA LOGAM ITU????????
Saat cahaya mengenai permukaan logam, maka elektron dalam atom akan menyerap energi. Elektron tersebut berpindah ke orbital dengan tingkat energi yang lebih tinggi (tereksitasi), Sehingga terdapat elektron negatif pada tingkat energi yang lebih tinggi dan positif pada tingkat energi yang lebih rendah. Sementara itu logam merupakan penghantar listrik yang baik arus listrik diinduksi pada permukaan sampai pada pasangan orbital kosong. Adanya arus ini menyebabkan logam berwarna, ketika elektron jatuh kembali ke tingkat energi semula dan memancarkan cahaya. Jika semua warna diserap dan dipancarkan dalam jumlah yang sama maka warna yang terjadi adalah warna metalik mengkilat, sedangkan untuk logam yang lain kemungkinan untuk menyerap dan memancarkan warna yang bervariasi bergantung pada tingkat energi elektron. Terjadinya warna kuning keemasan pada emas dan merah pada tembaga karena adanya kekurang efisienan dalam penyerapan dan pemancaran warna cahaya biru pada spektrum logam tersebut. Sedangkan warna komplemen dari biru adalah orange yang berasal dari gabungan warna kuning dan merah. Tembaga memiliki elektron terluar pada orbital 3d sedangkan emas 5d maka apabila terjadi pancaran energi maka emas akan akan memancarkan energi yang lebih tinggi dan karena dalam hal ini yan dipancarkan adalah jingga (warna cahaya biru diserap) maka emas akan memancarkan warna kuning dengan energi yang lebih tinggi dan tembaga akan memancarkan warna merah.


EMAS
Unsur dalam tabel periodik yang mempunyai simbol Au ini merupakan logam lembut, mengkilat, mudah ditempa, termasuk ke dalam logam peralihan (trivalen dan univalen) dan stabil. Logam ini berwarna kuning mengkilap tetapi juga dapat berwarna seperti delima atau hitam apabila di bagi dengan halus. Larutan kolid emas juga mempunyai warna berkeamatan tinggi yang biasanya berwarna ungu.

Warna yang terdapat pada emas adalah disebabkan oleh frekuensi plasmon emas yang terletak pada junglat penglihatan, mengkibatkan warna merah dan kuning dipantulkan sementara warna biru diserap.

Emas, Au, bernomor atom 79. Susunan elektron terluar dari emas adalah 4f14 5d10 6s1 (konfigurasi elektronnya [Xe] 4f14 5d10 6s1). Susunan elektron ini berkaitan dengan sifat warna kuning emas. Warna logam terbentuk berdasarkan transisi elektron di antara ikatan-ikatan energinya. Kemampuan menyerap cahaya pada panjang gelombang untuk menghasilkan warna emas yang khas terjadi karena transisi ikatan d yang melepaskan posisi di ikatan konduksi.


TEMBAGA

Unsur kimia yang dalam tabel periodik mempunyai simbol Cu ini merupakan logam mulur yang mempunyai sifat konduktifitas yang sangat baik. Warna logam ini adalah kemerahan. Ciri warna yang dimilikinya disebabkan oleh struktur jalurnya, yaitu memantulkan cahaya merah dan jingga dan menyerap frekuensi-frekuensi lain dalam spektrum tampak.

Tembaga, Cu bernomor atom 29. Susunan elektron terluar dari tembaga adalah 3d10 4s1 ( konfigurasi elektronnya [Ar]3d10 4s1). Jika orbital-d dari sebuah kompleks (senyawa koordinasi) berpisah menjadi dua kelompok, maka ketika molekul tersebut menyerap foton dari cahaya tampak, satu atau lebih elektron yang berada dalam orbital tersebut akan meloncat dari orbital-d yang berenergi lebih rendah ke orbital-d yang berenergi lebih tinggi, menghasilkan keadaan atom yang tereksitasi. Perbedaan energi antara atom yang berada dalam keadaan dasar dengan yang berada dalam keadaan tereksitasi sama dengan energi foton yang diserap dan berbanding terbalik dengan gelombang cahaya. Karena hanya gelombang-gelombang cahaya (ë) tertentu saja yang dapat diserap (gelombang yang memiliki energi sama dengan energi eksitasi), maka senyawa-senyawa tersebut akan memperlihatkan warna komplementer (gelombang cahaya yang tidak terserap).

REFERENSI:
1. http://www.bappebti.go.id/sisinfo/data/emasprofil.asp
2. http://wapedia.mobi/ms/tembaga
3. http://wapedia.mobi/ms/Emas
4. http://id.wikipedia.org





STRUKTUR KRISTAL

a. Susunan terjejal
Banyak senyawa, khususnya kristal logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin. Sruktur kristal semacam ini disebut dengan struktur terjejal. 
Sebagai contoh, perhatikan susunan terjejal kristal logam yang terdiri atas atom sferik (bola). Bola-bola ini disusun dalam lapisan. Lapisan pertama harus disusun seperti gambar 8.4(a) untuk mendapatkan susunan terjejal. Setiap bola di lapisan kedua menempati lubang yang dibentuk oleh tiga bola di lapisan pertama. Ini adalah cara yang paling efisien untuk menggunakan ruang yang tersedia (Gambar 8.4(b)). Ada dua cara untuk meletakkan lapisan ketiganya. Salah satunya adalah dengan meletakkan langsung di atas bola lapisan pertama (Gambar 8.4(c)), dan cara yang kedua adalah dengan meletakkannya di atas lubang lapisan kedua (Gambar 8.4(d)). Untuk mudahnya, cara pertama disebut dengan susunan abab, dan sruktur yang dihasilkan disebut dengan heksagonal terjejal. Cara yang kedua disebut dengan susunan abc dan sruktur yang dihasilkan disebut dengan kubus terjejal. 
Susunan terjejal apapun akan memiliki sifat umum: (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya. Jumlah bola yang beresentuhan dengan bola yang menjadi acuan disebut dengan bilangan koordinasi. Untuk struktur terjejal, bilangan koordinasi adalah 12, yang merupakan bilangan koordinasi maksimum. Dalam kasus ini, empat partikel dimasukkan dalam satu sel satuan. 

Perak mengkristal dalam susunan kubus terjejal. Bila kristalnya dipotong seperti ditunjukkan di Gambar 8.5, satu bola akan terletak di pusat setiap muka kubus. Karena satu bola (satu atom) terletak di setiap pusat muka kubus, maka kisi ini disebut dengan kisi berpusat muka.

Latihan 1 Kerapatan Logam 
Radius atom perak adalah 0,144 nm. Dengan mengetahui bahwa perak berstruktur kubus berpusat muka, hitung kerapatan perak (g/cm3). 
Jawab. 
Penyusunan atom perak diperlihatkan di gambar 8.5. Anda perlu menentukan volume dan jumlah atom perak dalam satu sel satuan. Karena panjang diagonal adalah 4r, d dapat ditentukan dengan 
teorema Pythagoras, d2 + d2 = (4r)2 Jadi : d = r√8 = 0,144√8 = 0,407 nm. Jumlah atom perak dalam satu sel satuan dapat diperoleh dari Gambar 8.5. Terlihat terdapat enam separuh bola dan delapan 1/8 bola. Sehingga totalnya ada 4 bola per sel satuan. Massa atom perak adalah m = 107,9 (g mol-1) / 6,022 x 1023 (atom mol-1) = 1,792 x 10-22 (g atom-1). 
Karena kerapatan adalah (massa/volume), maka kerapatan perak dAg = [4.(atom) x 1,792 x 10–22 (g .atom1)]/(0,407 x 10-7)3 (cm3) = 10,63 (g.cm-3). Nilai yang didapat dari percobaan adalah 10,5 (g.cm-3) pada temperatur 20 °C.

b. Kubus berpusat badan
Beberapa logam , seperti logam alkali, mengkristal dalam kisi kubus berpusat badan, yang mengandung bola yang terletak di pusat kubus dan di sudut-sudut kubus sel satuan sebagaimana diperlihatkan di Gambar 8.6. Cara penyusunan ini disebut dengan kisi kubus berusat badan. 
 
Latihan 2 Susunan kristal logam
Pada kubus pusat badan: (1) tentukan bilangan koordinasi atom logam di pusat sel satuan (2) berapa bagian bola bola yang terletak di sudut sel satuan (3) tentukan bilangan koordinasi atom logam di sudut . 
Jawab. 
(1) 8. Bola di pusat dikelilingi delapan bola lain, satu setiap sudut kubus. (2) 1/8. Ada delapan bola (3) 8. Setiap bola di setiap sudut sel satuan hanya bersentuhan dengan delapan bola di pusat sel satuan yang mengelilinginya. 
Karena bilangan koordinasinya 8, susunan kubus berpusat badan bukan susunan terjejal. 

c. Analisis kristalografi sinar-X
Teknik analisis kristalografi sinar-X pertama dikenalkan di awal abad 20, dan sejak itu telah digunakan dengan meluas untuk penentuan struktur berbagai senyawa. Teknik ini dengan sempurna telah menyelesaikan berbagai masalah yang sebelumnya tidak dapat diselesaikan. Tahap awal dicapai oleh William Henry Bragg (1862-1942), sang ayah, dan William Laurence Bragg (1890-1971), anaknya, yang menentukan struktur garam dan intan. 
Hingga beberapa tahun terakhir, analisis kristalografi sinar-X hanya dilakukan para spesialis, yakni kristalografer, apapun molekul targetnya. Sungguh, pengukuran dan pemrosesan data yang diperlukan memerlukan pengetahuan dan pengalaman yang banyak. Namiun kini, berkat perkembangan yang cepat dan banyak dalam bidang hardware maupun software kristalografi sinar-X, pengukuran kristalografi sinar-X telah menjadi mungkin dilakukan dengan training yang lebih singkat. Kini, bahkan kimiawan sintesis yang minat utamanya sintesis dan melakukan analisis kristalografi sinar-X sendiri. Akibatnya molekul target yang dipelajari oleh para spesialis menjadi semakin rumit, dan bahkan struktur protein kini dapat dielusidasi bila massa molekulnya tidak terlalu besar. Kini pengetahuan tentang analisis kristalografi diperlukan semua kimiawan selain NMR (Bab 13.3). 
Difraksi cahaya terjadi dalam zat bila jarak antar partikel-partikelnya yang tersusun teratur dan panjang gelombang cahaya yang digunakan sebanding. Gelombang terdifraksi akan saling menguatkan bila gelombangnya sefasa, tetapi akan saling meniadakan bila tidak sefasa. Bila kristal dikenai sinar-X monokromatis, akan diperoleh pola difraksi. Pola difraksi ini bergantung pada jarak antar titik kisi yang menentukan apakah gelombang akan saling menguatkan atau meniadakan. 
 
Difraksi sinar- X oleh atom yang terletak di dua lapis kristal. Bila selisih lintasan optis, xy + yz = 2dsinθ, sama dengan kelipatan bulat panjang gelombang, gelombang tersebut akan saling menguatkan.
Andaikan panjang gelombang sinar-X adalah λ (Gambar 8.7). Bila selisih antara lintasan optik sinar-X yang direfleksikan oleh atom di lapisan pertama dan oleh atom yang ada di lapisan kedua adalah 2dsinθ, gelombang-gelombang itu akan saling menguatkan dan menghasilkan pola difraksi. Intensitas pola difraksi akan memberikan maksimum bila: 
nλ = 2dsinθ … (8.1)
Persamaan ini disebut dengan kondisi Bragg. 
Kondisi Bragg dapat diterapkan untuk dua tujuan. Bila jarak antar atom diketahui, panjang gelombang sinar-X dapat ditentukan dengan mengukur sudut difraksi. Moseley menggunakan metoda ini ketika ia menentukan panjang gelombang sinar X berbagai unsur. Di pihak lain, bila panjang gelombang sinar-X diketahui, jarak antar atom dapat ditentikan dengan mengukur sudut difraksi. Prinsip inilah dasar analisis kristalografi sinar-X. 
Latihan 3Kondisi Bragg 
Sinar-X dengan panjang gelombang 0,154 nm digunakan untuk analisis kristal aluminum. Pola difraksi didapatkan pada θ = 19.3°. Tentukan jarak antar atom d, dengan menganggap n = 1. 
Jawab 
d = nλ/2sinθ = (1 x 0,154)/(2 x 0,3305) = 0,233 (nm)

soal-soal:
1.10. Satuan sel emas adalah kubus pusat muka (fcc). Berapa jumlah atom menempati satu satuan sel emas dan berapa massa satu satuan sel emas ini? 
Jawabanya adalah.......
a. Satuan sel emas mempunyai bentuk fcc maka jumlah atom dalam satu satuan sel emas adalah : 6x1/2 (pada tiap sisi kubus terdapat 1/2 atom) = 3 atom
8x1/8 (pada tiap sudut kubus terdapat 1/8 atom) = 1 atom 
Jadi dalam satu satuan sel emas terdapat 4 atom.
b. Massa satuan sel emas 
m = (4/6,02x10 23) : 196,967
=130,87x10 -23 gram
=1,3087x10 -21 gram
1.11. Panjang satuan sel emas adalah 0,4079 nm. Hitunglah volume satu satuan sel kubus emas dengan informasi dari soal no 1.10 tersebut, hitung pula rapatan teoritis emas ini!
Jawabannya adalah.....
s = 0,4079nm = 4,079x10 -8 cm
a. Volume satu satuan sel emas
V= sxsxs
= (4,079x10 -8cm)(4.079x10 -8cm)(4,079x10 -8cm)
= 67,867x10 -24cm 3
= 6,7867x10 -23cm 3
b. Rapatan teoritis emas
Rapatan = (sigma nixMr):NV
= (4x196,967):(6,02x10 23x6,7867x10 -23)
= 787,868:40,856l
= 19,284g/ml
1.12. Panjang satuan sel intan terukur 0,3567nm. Hitung volume satuan sel kubus intan (dalam cm 3) dan hitung rapatan teoritis intan jika massa satu atom karbon adalah 12,01g/mol; bandingkan hasilnya dengan rapatan intan terukur pada 25'C yaitu 3,513g/mol.
Jawabannya adalah.....
s = 0,3567nm = 3,567x10 -8cm
a. Volume sasatuan sel kubus dalam cm 3
V = sxsxs
= (3,567x10 -8cm)(3,567x10 -8cm)(3,567x10 -8cm)
= 45,385x10 -24cm 3
= 4,5385x10 -23cm 3
b. Rapatan teoritis intan 
Intan mengadopsi banhun utama fcc ditambah 4 atom terikat secara tetrahedral di dalamnya (interior) Oleh karena itu setiap satuan sel intan terdiri dari :
(8x1/8)+(6x1/2atom pusat muka)+4 atom interior = 8 atom
Maka :
rho = (sigma nixMr)/NV
= (8x12,01):(6.02x10 23 x 4,5385x10 -23cm 3 )
= 96,08g:27,32177cm 3
= 3,516g/cm 3




warna logam

APA WARNA LOGAM ITU????????
Saat cahaya mengenai permukaan logam, maka elektron dalam atom akan menyerap energi. Elektron tersebut berpindah ke orbital dengan tingkat energi yang lebih tinggi (tereksitasi), Sehingga terdapat elektron negatif pada tingkat energi yang lebih tinggi dan positif pada tingkat energi yang lebih rendah. Sementara itu logam merupakan penghantar listrik yang baik arus listrik diinduksi pada permukaan sampai pada pasangan orbital kosong. Adanya arus ini menyebabkan logam berwarna, ketika elektron jatuh kembali ke tingkat energi semula dan memancarkan cahaya. Jika semua warna diserap dan dipancarkan dalam jumlah yang sama maka warna yang terjadi adalah warna metalik mengkilat, sedangkan untuk logam yang lain kemungkinan untuk menyerap dan memancarkan warna yang bervariasi bergantung pada tingkat energi elektron. Terjadinya warna kuning keemasan pada emas dan merah pada tembaga karena adanya kekurang efisienan dalam penyerapan dan pemancaran warna cahaya biru pada spektrum logam tersebut. Sedangkan warna komplemen dari biru adalah orange yang berasal dari gabungan warna kuning dan merah. Tembaga memiliki elektron terluar pada orbital 3d sedangkan emas 5d maka apabila terjadi pancaran energi maka emas akan akan memancarkan energi yang lebih tinggi dan karena dalam hal ini yan dipancarkan adalah jingga (warna cahaya biru diserap) maka emas akan memancarkan warna kuning dengan energi yang lebih tinggi dan tembaga akan memancarkan warna merah.


EMAS
Unsur dalam tabel periodik yang mempunyai simbol Au ini merupakan logam lembut, mengkilat, mudah ditempa, termasuk ke dalam logam peralihan (trivalen dan univalen) dan stabil. Logam ini berwarna kuning mengkilap tetapi juga dapat berwarna seperti delima atau hitam apabila di bagi dengan halus. Larutan kolid emas juga mempunyai warna berkeamatan tinggi yang biasanya berwarna ungu.
Warna yang terdapat pada emas adalah disebabkan oleh frekuensi plasmon emas yang terletak pada junglat penglihatan, mengkibatkan warna merah dan kuning dipantulkan sementara warna biru diserap.

Emas, Au, bernomor atom 79. Susunan elektron terluar dari emas adalah 4f14 5d10 6s1 (konfigurasi elektronnya [Xe] 4f14 5d10 6s1). Susunan elektron ini berkaitan dengan sifat warna kuning emas. Warna logam terbentuk berdasarkan transisi elektron di antara ikatan-ikatan energinya. Kemampuan menyerap cahaya pada panjang gelombang untuk menghasilkan warna emas yang khas terjadi karena transisi ikatan d yang melepaskan posisi di ikatan konduksi.
TEMBAGA
Unsur kimia yang dalam tabel periodik mempunyai simbol Cu ini merupakan logam mulur yang mempunyai sifat konduktifitas yang sangat baik. Warna logam ini adalah kemerahan. Ciri warna yang dimilikinya disebabkan oleh struktur jalurnya, yaitu memantulkan cahaya merah dan jingga dan menyerap frekuensi-frekuensi lain dalam spektrum tampak.
Tembaga, Cu bernomor atom 29. Susunan elektron terluar dari tembaga adalah 3d10 4s1 ( konfigurasi elektronnya [Ar]3d10 4s1).
Jika orbital-d dari sebuah kompleks (senyawa koordinasi) berpisah menjadi dua kelompok, maka ketika molekul tersebut menyerap foton dari cahaya tampak, satu atau lebih elektron yang berada dalam orbital tersebut akan meloncat dari orbital-d yang berenergi lebih rendah ke orbital-d yang berenergi lebih tinggi, menghasilkan keadaan atom yang tereksitasi. Perbedaan energi antara atom yang berada dalam keadaan dasar dengan yang berada dalam keadaan tereksitasi sama dengan energi foton yang diserap dan berbanding terbalik dengan gelombang cahaya. Karena hanya gelombang-gelombang cahaya (ë) tertentu saja yang dapat diserap (gelombang yang memiliki energi sama dengan energi eksitasi), maka senyawa-senyawa tersebut akan memperlihatkan warna komplementer (gelombang cahaya yang tidak terserap).

REFERENSI:
1. http://www.bappebti.go.id/sisinfo/data/emasprofil.asp
2. http://wapedia.mobi/ms/tembaga
3. http://wapedia.mobi/ms/Emas
4. http://id.wikipedia.org








a. Susunan terjejal
Banyak senyawa, khususnya kristal logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin. Sruktur kristal semacam ini disebut dengan struktur terjejal. 
Sebagai contoh, perhatikan susunan terjejal kristal logam yang terdiri atas atom sferik (bola). Bola-bola ini disusun dalam lapisan. Lapisan pertama harus disusun seperti gambar 8.4(a) untuk mendapatkan susunan terjejal. Setiap bola di lapisan kedua menempati lubang yang dibentuk oleh tiga bola di lapisan pertama. Ini adalah cara yang paling efisien untuk menggunakan ruang yang tersedia (Gambar 8.4(b)). Ada dua cara untuk meletakkan lapisan ketiganya. Salah satunya adalah dengan meletakkan langsung di atas bola lapisan pertama (Gambar 8.4(c)), dan cara yang kedua adalah dengan meletakkannya di atas lubang lapisan kedua (Gambar 8.4(d)). Untuk mudahnya, cara pertama disebut dengan susunan abab, dan sruktur yang dihasilkan disebut dengan heksagonal terjejal. Cara yang kedua disebut dengan susunan abc dan sruktur yang dihasilkan disebut dengan kubus terjejal. 
Susunan terjejal apapun akan memiliki sifat umum: (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya. Jumlah bola yang beresentuhan dengan bola yang menjadi acuan disebut dengan bilangan koordinasi. Untuk struktur terjejal, bilangan koordinasi adalah 12, yang merupakan bilangan koordinasi maksimum. Dalam kasus ini, empat partikel dimasukkan dalam satu sel satuan. 


warna logam

APA WARNA LOGAM ITU????????
Saat cahaya mengenai permukaan logam, maka elektron dalam atom akan menyerap energi sehingga elektron tersebut berpindah ke orbital dengan tingkat energi yang lebih tinggi (tereksitasi). Sehingga terdapat elektron negatif pada tingkat energi yang lebih tinggi dan positif pada tingkat energi yang lebih rendah. Sementara itu logam merupakan penghantar listrik yang baik arus listrik diinduksi pada permukaan sampai pada pasangan orbital kosong. Adanya arus ini menyebabkan logam berwarna, ketika elektron jatuh kembali ke tingkat energi semula dan memancarkan cahaya. Jika semua warna diserap dan dipancarkan dalam jumlah yang sama maka warna yang terjadi adalah warna metalik mengkilat, sedangkan untuk logam yang lain kemungkinan untuk menyerap dan memancarkan warna yang bervariasi bergantung pada tingkat energi elektron. Terjadinya warna kuning keemasan pada emas dan merah pada tembaga karena adanya kekurang efisienan dalam penyerapan dan pemancaran warna cahaya biru pada spektrum logam tersebut. Sedangkan warna komplemen dari biru adalah orange yang berasal dari gabungan warna kuning dan merah. Tembaga memiliki elektron terluar pada orbital 3d sedangkan emas 5d maka apabila terjadi pancaran energi maka emas akan akan memancarkan energi yang lebih tinggi dan karena dalam hal ini yan dipancarkan adalah jingga (warna cahaya biru diserap) maka emas akan memancarkan warna kuning dengan energi yang lebih tinggi dan tembaga akan memancarkan warna merah.


EMAS
Unsur dalam tabel periodik yang mempunyai simbol Au ini merupakan logam lembut, mengkilat, mudah ditempa, termasuk ke dalam logam peralihan (trivalen dan univalen) dan stabil. Logam ini berwarna kuning mengkilap tetapi juga dapat berwarna seperti delima atau hitam apabila di bagi dengan halus. Larutan kolid emas juga mempunyai warna berkeamatan tinggi yang biasanya berwarna ungu.
Warna yang terdapat pada emas adalah disebabkan oleh frekuensi plasmon emas yang terletak pada junglat penglihatan, mengkibatkan warna merah dan kuning dipantulkan sementara warna biru diserap.

Emas, Au, bernomor atom 79. Susunan elektron terluar dari emas adalah 4f14 5d10 6s1 (konfigurasi elektronnya [Xe] 4f14 5d10 6s1). Susunan elektron ini berkaitan dengan sifat warna kuning emas. Warna logam terbentuk berdasarkan transisi elektron di antara ikatan-ikatan energinya. Kemampuan menyerap cahaya pada panjang gelombang untuk menghasilkan warna emas yang khas terjadi karena transisi ikatan d yang melepaskan posisi di ikatan konduksi.
TEMBAGA
Unsur kimia yang dalam tabel periodik mempunyai simbol Cu ini merupakan logam mulur yang mempunyai sifat konduktifitas yang sangat baik. Warna logam ini adalah kemerahan. Ciri warna yang dimilikinya disebabkan oleh struktur jalurnya, yaitu memantulkan cahaya merah dan jingga dan menyerap frekuensi-frekuensi lain dalam spektrum tampak.
Tembaga, Cu bernomor atom 29. Susunan elektron terluar dari tembaga adalah 3d10 4s1 ( konfigurasi elektronnya [Ar]3d10 4s1).
Jika orbital-d dari sebuah kompleks (senyawa koordinasi) berpisah menjadi dua kelompok, maka ketika molekul tersebut menyerap foton dari cahaya tampak, satu atau lebih elektron yang berada dalam orbital tersebut akan meloncat dari orbital-d yang berenergi lebih rendah ke orbital-d yang berenergi lebih tinggi, menghasilkan keadaan atom yang tereksitasi. Perbedaan energi antara atom yang berada dalam keadaan dasar dengan yang berada dalam keadaan tereksitasi sama dengan energi foton yang diserap dan berbanding terbalik dengan gelombang cahaya. Karena hanya gelombang-gelombang cahaya (ë) tertentu saja yang dapat diserap (gelombang yang memiliki energi sama dengan energi eksitasi), maka senyawa-senyawa tersebut akan memperlihatkan warna komplementer (gelombang cahaya yang tidak terserap).

REFERENSI:
1. http://www.bappebti.go.id/sisinfo/data/emasprofil.asp
2. http://wapedia.mobi/ms/tembaga
3. http://wapedia.mobi/ms/Emas
4. http://id.wikipedia.org








a. Susunan terjejal
Banyak senyawa, khususnya kristal logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin. Sruktur kristal semacam ini disebut dengan struktur terjejal. 
Sebagai contoh, perhatikan susunan terjejal kristal logam yang terdiri atas atom sferik (bola). Bola-bola ini disusun dalam lapisan. Lapisan pertama harus disusun seperti gambar 8.4(a) untuk mendapatkan susunan terjejal. Setiap bola di lapisan kedua menempati lubang yang dibentuk oleh tiga bola di lapisan pertama. Ini adalah cara yang paling efisien untuk menggunakan ruang yang tersedia (Gambar 8.4(b)). Ada dua cara untuk meletakkan lapisan ketiganya. Salah satunya adalah dengan meletakkan langsung di atas bola lapisan pertama (Gambar 8.4(c)), dan cara yang kedua adalah dengan meletakkannya di atas lubang lapisan kedua (Gambar 8.4(d)). Untuk mudahnya, cara pertama disebut dengan susunan abab, dan sruktur yang dihasilkan disebut dengan heksagonal terjejal. Cara yang kedua disebut dengan susunan abc dan sruktur yang dihasilkan disebut dengan kubus terjejal. 
Susunan terjejal apapun akan memiliki sifat umum: (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya. Jumlah bola yang beresentuhan dengan bola yang menjadi acuan disebut dengan bilangan koordinasi. Untuk struktur terjejal, bilangan koordinasi adalah 12, yang merupakan bilangan koordinasi maksimum. Dalam kasus ini, empat partikel dimasukkan dalam satu sel satuan.